Ровняння зо знаком модуля

Решебник (ГДЗ) Алгебра 10 класс Є.П. Нелін Академічний рівень | Вшколе

При решении уравнений, содержащих выражение с неизвестной под знаком модуля, в соответствии с правилом раскрытия модуля, рассматриваются. Уравнение, содержащее выражение с неизвестной Х под знаком модуля, называется Уравнением с модулем. Рассмотрим основные типы уравнений с. Уравнения и неравенства с переменной под знаком модуля.

Умножим дробь на некоторое выражение, принимающее лишь положительные значения и такое, чтобы упростить исходное неравенство: Решив полученное рациональное неравенство методом интервалов получим решение первоначального неравенства Ответ: Уравнения и неравенства с модулем, содержащие параметры рационально решать одним из основных методов, а именно графическим.

Продемонстрируем решение сложной задачи с параметром, содержащую уравнение с модулем. Найти такие значения параметрапри которых уравнение имеет ровно корней [4].

Уравнение с модулем, решение, система уравнений, примеры, тесты - курсы

Построив график функции используя правило построения графиков функций вида и рассмотрев все случаи, в зависимости от параметра легко увидеть, что искомое равенство достигается только в случае рис.

Таким образом, мы продемонстрировали многообразие способов и приёмов решения уравнений и неравенств, содержащих переменную под знаком модуля, и выделили наиболее рациональные в тех или иных случаях. Заключение В данной работе изложены вопросы, касающиеся понятия абсолютной величины числа, уравнений и неравенств, содержащих переменную под знаком модуля. Выделена типология уравнений и неравенств, содержащих знак абсолютной велечины: Обобщение методов, используемых в решении задач по теме нашего исследования, позволило выделить следующие приёмы, упрощающие решение уравнений и неравенств с модулем: Приведённая типология задач, а также описанные приёмы и методы могут быть использованы в разработке методических рекомендаций к проведению факультативных занятий по алгебре в курсе средней общеобразовательной школы, а также на уроках в школах и классах с углублённым изучением математики.

Список использованных источников Антипина, Н. Кудрявцев — 7-е изд. Пособие по элементарной алгебре в 2 ч. История математики в школе. Школа решения нестандартных задач. Нешков — 6-е изд. Образовательный портал для подготовки к экзаменам. А значит, его нужно отбросить. План решения уравнений с модулем методом интервалов. Найти ОДЗ область допустимых значений уравнения.

Решебник (ГДЗ) Алгебра 10 клас Є.П. Нелін (2010 рік) Академічний рівень

Найти нули выражений, стоящих под знаком модуля. Разбить область допустимых значений уравнения на интервалы. Найти решение уравнения на каждом интервале и проверить, входит ли полученное решение в рассматриваемый интервал. Записать корни уравнения, учитывая все полученные значения переменной. Таким образом, верное решение уравнения можно оформить в следующем виде: Ошибка допущена при рассмотрении пункта б.

Квадратні рівняння

Но можно предложить более красивый способ решения. Вспомним о геометрическом смысле модуля. Для решения нашего уравнения нужно найти такие точки на числовой прямой, для которых сумма расстояний до точек 1 и 2 равняется 1. Применяя метод интервалов, рассматриваем неравенство на двух промежутках: На самом деле знак выражения под знаком модуля каждый раз нужно определять.

Другой способ решения этого неравенства состоит в использовании геометрической интерпретации модуля и переформулировать задание следующим образом: Совершенно ясно, что это значения х лежащие между 2 и 6. При подготовке Единому государственному экзамену по математике, учителю необходимы такие технологии обучения и организации итогового повторения, которые позволят выпускникам демонстрировать уровень своих знаний не ниже своей годовой отметки.

Особое внимание стоит обратить на формулировки вопросов. В заданиях ЕГЭ представлен широкий спектр таких вопросов, например: